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Anumerical method has been developed for the calculation of the pressure distribution, 
forces and moments on a two-dimensional aerofoil undergoing an arbitrary unsteady 
motion in an inviscid incompressible flow. In  a discussion of the appropriate Kutta 
condition(s) it is argued that two Kutta conditions are required to obtain a satisfactory 
solution. The method is applied to (i) a sudden change in aerofoil incidence, (ii) an 
aerofoil oscillating at high frequency and (iii) an aerofoil passing through a sharp-edged 
gust. 

1. On the Kutta condition 
In  this paper a numerical method is formulated to solve the flow about a two-dimen- 

sionaI aerofoil which is performing some kind of time-dependent motion in an incom- 
pressible inviscid fluid. As in all problems concerning aerofoils in inviscid flow, 
auxiliary conditions need to be invoked to ensure that a unique solution is obtained. 
These conditions, known as the Kutta conditions, relate to assumptions about the 
flow characteristics at, or at least in the neighbourhood of, the aerofoil trailing edge. 
To some extent this paper is concerned with the elucidation of the appropriate Kutta 
condition(s) to give a consistent mathematical model as a basis for a numerical sol- 
ution. Before presenting the formulation of the unsteady mathematical model, some 
general comments on the Kutta conditions are made. 

Consider first an aerofoil at  a steady small angle of incidence in a steady inviscid 
incompressible stream. It is implicit in the statement of this problem that the aim is 
to represent the characteristics of the steady aerofoil in a real, viscous fluid flow at 
high Reynolds number. When the flow is attached the effects of viscosity are con- 
Ibed to thin boundary layers on the aerofoil surface and to the downstream wake 
formed by the merging of the upper and lower surface boundary layers a t  the aerofoil 
trailing edge, As a first approximation it is reasonable to assume that the flow can be 
regarded as inviscid so long as the flow in the region of the trailing edge remains 
‘sensible’; that is, no infinities in either flow velocities or in the pressure should appear 
in the solution a t  the sharp trailing edge. It is common practice to regard the inviscid 
solution as a first stage in an iterative procedure for the real flow solution; in subsequent 
stages the displacement effects of the boundary layer and wake are superimposed on 
the aerofoil surface and the inviscid solution around a displaced surface, no longer 
closed, is determined. 
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FIGURE 1. Steady aerofoil in inviscid flow: analytic solution. 

Analytic solutions for steady lifting aerofoils of special profile in a steady incom- 
pressible inviscid stream can be obtained from conformal transformation techniques 
(Glauert 1947), in which the inviscid flow about the aerofoil is transformed into the 
inviscid flow about a circular cylinder. The standard unique solution is obtained 
using the Kutta condition that velocities remain finite at the trailing edge; the trailing- 
edge point for a non-zero trailing-edge angle is then a stagnation point and the dividing 
streamline from the trailing edge bisects the tangents from the upper and lower surfaces 
a t  the trailing edge as shown in figure 1. In  this analytic solution, although the velo- 
cities, and pressures, remain finite at the trailing edge, the flow at the trailing edge 
itself is singular in the sense that the rates of change of the surface velocities are 
infinite there. It should also be noted that all solutions for the inviscid flow past a 
steady aerofoil when the separation point lies on either the upper or the lower surface 
(i.e. when the flow does not separate at the trailing edge) necessarily have infinite 
velocities and pressures at the trailing edge, and the loading (i.e. the difference 
between the pressures on the upper and lower surfaces) is also infinite at the trailing 
edge for a non-zero trailing-edge angle. 

For those steady aerofoils in a uniform stream not amenable to solution by conformal 
transformation, a direct numerical method can be applied; the most popular technique 
is associated with Hess & Smith (1967). One variant of this method (Hancock & 
Padfield 1972) is shown in figure 2; the aerofoil surface is divided into N straight-line 
elements, starting with element 1 on the lower surface at  the trailing edge and pro- 
ceeding clockwise around the aerofoil contour; so that element N is on the upper 
surface at  the trailing edge. A uniform source distribution a, and a uniform vorticity 
distribution y are placed on the ith element; the source strength a, varies from 
element to element but the vorticity strength y is the same for all elements. The 
boundary condition of tangential flow over the aerofoil surface is satisfied by taking 
the resultant velocity at the exterior midpoint of each element to be tangential to 
that element; thus 

where (qn) is the total normal velocity at the external midpoint of thejth element due 
to the free stream and the velocities induced by the source and vorticity distributions. 
For the Kutta condition, the tangential velocities and (qt)N in the downstream 
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FIGURE 2. Model for the steady inviscid numerical solution. 

direction a t  the midpoints of the two elements at the trailing edge are made equal. 
These conditions give N + 1 linear simultaneous equations from which the N + f un- 
knowns ni (i = 1,  . . . , N )  and y can be calculated. In  this numerical solution the basis 
of the Kutta condition is that if the (tangential) surface velocities in the downstream 
direction in the neighbourhood of the trailing edge are equal in magnitude then no 
vorticity can be shed aft of the aerofoil; this is consistent with the circulation around 
the wing remaining constant. When the surface velocities are made equal at the mid- 
points of the trailing-edge elements then, by the Bernoulli equation, the pressures 
a t  these points are also equal, so the Kutta condition can be reinterpreted as the 
condition of zero loading in the region of the trailing edge, which is physically realistic. 

In  the above numerical solution the actual trailing edge is not a stagnation point; 
in fact the velocities there are infinite as they are at the ends of all elements. Further- 
more it is found that the velocities a t  the midpoints of the trailing-edge elements 
differ significantly from stagnation values; they are more likely to be closer to the 
free-stream velocity. In  the numerical solution the flow characteristics are essentially 
averaged over the length of an element, thus the exact analytic singular behaviour in 
the neighbourhood of the rear stagnation point at the trailing edge is averaged over 
the trailing-edge elements. Analytical and numerical results for most aerofoiIs are 
virtually identical except in the region very close to the trailing edge, as shown in 
figure 3, in spite of the alternative forms of the Kutta condition. 

It is argued that there is no definitive statement of the Kutta condition for a steady 
aerofoil, each mathematical model requiring its own consistent ' Kutta ' condition to 
ensure a unique solution; the relevant and appropriate Kutta condition needs to be 
formulated separately for each mathematical model. 

6 F L M  a7 
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FIGURE 3. Comparison of analytic solution (curve) and numerical solution (points) for a 13 yo 
thick symmetrical K&rm&n-Trefftz aerofoil. D = lo", c = chord. 

Attention is now turned to the case where the aerofoil is moving relative to a steady 
incompressible inviscid stream. As indicated in figure 4 (a), the circulation r(t) 
around the aerofoil varies with time t .  Since the total circulation around the aerofoil 
and wake must be zero, circulation of strength (ar/at) 6t is shed aft of the aerofoil in 
a time 6t and this shed vorticity is then convected downstream. The behaviour of the 
flow in the region of the trailing edge is now considered. 

Suppose that the flow separates from the trailing edge, as shown in figure 4 ( b ) ,  
where it is implied that the trailing edge is a conventional stagnation point. Then the 
flow approaching the trailing edge T on both the upper surface UT and the lower 
surface LT will tend to zero. Although the velocities on the upper and lower surfaces 
become equal on approaching T, the pressures do not tend to the same values because 
in the application of the unsteady Bernoulli equation a discontinuity in a$/at exists 
which is associated with ar/at. A finite pressure difference at  the trailing edge is 
unacceptable on physical grounds. The solution sought should have no infinities in 
either the velocity or the pressure at  the trailing edge. 

To meet these conditions Maskell (1 972) argues that the flow must leave the trailing 
edge parallel either to the upper surface or to the lower surface depending on the sign 
of the shed vorticity. When the shed vorticity is anticlockwise the flow leaves the 
trailing edge parallel to the lower surface as shown in figure 4(c), whereas when the 
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FIGURE 4. (a) Aerofoil moving relative to a steady inviscid stream. (b )  ‘Separation’ at 
trailing edge. (o), (d) ‘Maskell’ trailing-edge flows. 

shed vorticity is clockwise the flow leaves the trailing edge parallel to the upper surface 
as shown in figure 4 (d). For the flow shorn in figure 4 (c), the velocity qu on the upper 
surface tends to zero at the trailing edge while the velocity ql on the lower surface 
remains h i t e ;  the pressure difference is zero upstream of the trailing edge provided 
that 

0 = PI - Pu = - P a+,/at + pa+,/at - #Pal” + *Pa:, (2) 

i.e. a(+1 - +u)/at = a r p t  = 4q;. (3) 

Equation (3) is compatible with convection of shed vorticity at  the trailing edge with 
the local velocity since aft of the trailing edge 

(ar /a t )  6t = qlss; 

thus ar/at = qI(88/8)8t--tO = &$ (4) 

since (6s/6t)8t,, is equal to iq,, the mean of the two velocities either side of the shed 
vortex sheet. Giesing (1969) came to the same conclusion by following a slightly 
different approach. 

A consequence of the above argument is the recognition that the steady state is 
not a simple limit of an unsteady problem as ar/at tends to zero. According to the 
above argument the flow always leaves the trailing edge parallel to either the upper 
or the lower surface whatever the magnitude of ar/at as long as ar/at =+ 0. However, 
when aI’/at is identically zero the flow leaves the trailing edge along the bisector of 
the trailing-edge angle. It is postulated, although no proof has yet been given, that 
in the unsteady problem the curvature of the streamline emanating from the trailing 
edge in the region of the trailing edge tends to infinity as aP/at --f 0. In  this manner 
the unsteady problem degenerates into the known steady solution. 

Maskell’s solution in the region of the trailing edge arises from the assumptions 
that the loading across the shed vorticity in the wake is zero and that the velocities 
at the trailing edge remain finite; thus separation takes place from the sharp trailing 
edge and the loading across the trailing edge is zero for consistency with the condition 
of zero loading across the shed vorticity. 

6-2 
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Up to the present time, as far as the authors are aware, there is no analytic solution 
for an aerofoil undergoing an unsteady motion which satisfies both the condition of 
finite velocities and the condition of zero loading a t  the trailing edge. The most 
elegant analytic solution is due to van der Vooren & van der Vel (1964) and is based 
on a conformal mapping of a particular aerofoil oscillating in pitch or in heave into 
a stationary circle. Their Kutta condition makes the point on the circle corresponding 
to the trailing edge in the physical plane a stagnation point. This Kutta condition 
gives zero loading and smooth flow at the trailing edge only when the trailing edge is 
a cusp. For non-zero trailing-edge angles two singularities appear in the expression 
for the pressure; the removal of the larger velocity singularity leaves a weaker singu- 
larity which prevents smooth outflow and which implies a pressure discontinuity 
both at  the trailing edge and downstream across the wake. 

The most comprehensive numerical solution is due to Giesing (1969) and is based on 
the Hess & Smith procedure. The Kutta condition invoked here is velocities equal in 
both magnitude and (downstream) direction a t  the midpoint of the two trailing-edge 
elements. The implication is that there is not only a fmite loading across the trailing 
edge but also a iinite loading across the shed vorticity in the wake just downstream 
of the trailing edge. 

For general unsteady motions it is possible to obtain numerical solutions by im- 
posing either the condition of finite velocities about the trailing edge or the condition 
of zero loading about the trailing edge. It is argued that the appropriate solution 
should satisfy both conditions in the neighbourhood of the trailing edge. 

Here the basic numerical approach of Giesing (1968) is used but the conditions in 
the region of the trailing edge are modified. Since this approach is a numerical one 
the Kutta condition(s) have to be formulated for consistency with the mathematical 
model, and it is not admissible to use the local analytic Maskell trailing-edge flow 
with its singular behaviour involving infinite rates of change of velocity, etc. In  the 
numerical solution described here it is ensured that the flow separates from the trailing 
edge, that there is zero loading across the vorticity shed from the trailing edge just 
downstream of the trailing edge, and that there is zero loading across the two trailing- 
edge elements on the aerofoil surface either side of the trailing edge. No direct attempt 
is made to limit the trailing-edge velocities but these velocities necessarily remain 
finite because of the above conditions. 

In  0 2 the numerical model is formulated and the numerical procedure is outlined. 
I n  $9 3 , 4  and 5 the results are discussed for an aerofoil undergoing a sudden change in 
incidence, an aerofoil oscillating in pitch at high frequency and an aerofoil passing 
through a sharp-edged gust. 

2. Numerical solution for the unsteady motion of an aerofoil 

motion which started a t  t = 0 is calculated at successive intervals of time 
The solution for the flow about an aerofoil undergoing an arbitrary time-dependent 

tk ( t o = O ,  Ic=1,2 ,3  ,...) 

by a method based on the Hess & Smith approach. At time tk the model is as shown 
in figure 5. 
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FIGURE 6 .  Solution at time lk .  

The aerofoil contour at time tk is replaced by N straight-line elements. A uniform 
source distribution (vJk and a uniform vorticity distribution Yk are placed on the 
ith element (i = 1, ..., N ) ,  where (gi), varies from element to element, Yk is the same 
for all elements on the aerofoil and the subscript k refers to the time tk.  The overall 
circulation rk is 7, x (aerofoil perimeter). A small straight-line wake element of 
length A, and inclined at an angle 0, to the Ox axis (i.e. the free-stream direction) 
is attached to the trailing edge. The length A, and the inclination 8, are arbitrary at 
this stage; their values are to be determined as part of the solution. The vorticity on 
the trailing-edge wake element is (Y&, where 

Ak(Yw)k = rk - rk-l- (5) 

Thus the circulation on the element is the change in circulation around the aerofoil 
between times tkd1 and t,, assuming that r k - 1  has already been evaluated. A down- 
stream wake of concentrated vortices is formed from the vorticity shed a t  earlier 
times, which is assumed to be concentrated into discrete vortices and convected 
according to the resultant velocities calculated a t  the centre of each vortex at each 
successive time interval. Thus the pattern of the downstream discrete vortices, their 
strengths and their positions are regarded as known at time tk.  

Thus a t  time t ,  there are N + 3 unknowns (vi)k (i = 1, ..., N ) ,  yk, Ak Pnd 8,. The 
basic set of equations can be formulated as follows. 

(i) The N conditions of zero normal flow a t  the external midpoint of each aerofoil 
element are 

(Qnj) ,  = 0, (6) 

where (Qnj) ,  is the total normal velocity at  the exterior midpoint of thejth element 
at  time t k .  

(ii) The condition of equal pressures at  the midpoint of the two elements on the 
aerofoil on either side of the trailing edge is 

(Qtl)% = (stA')% + 2 ( r k -  r k - l ) / ( t k - f k - l ) *  (7) 
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where (&& is the total tangential velocity a t  the midpoint of element 1 and ( 8 t N ) k  

is the total tangential velocity a t  the midpoint of element N at time tk .  

(iii) The length and orientation of the trailing-edge wake element (i.e. Ak and 0,) 
are determined from the condition that the element is tangential to the local resultant 
velocity and that its length is proportional to the local resultant velocity. If (u , )k  

and (W& are the total component velocities induced a t  the midpoint of the trailing- 
edge wake element, excluding the effect of the element on itself, then 

and 

Since the problem is concerned with incompressible flow the formulae for the induc- 
tion of velocities by source and vorticity distributions are the same as for the steady 
cam; thus the experience gained with the steady Hess & Smith method carries over 
to the unsteady problem. 

If (f.r& and Y k  are normalized with respect to c and Urn, the normalized perturbation 
velocities at  the midpoint of the outer surface of thejth element due to the distribu- 
tions of sources and vorticity on the aerofoil can be expressed in the form 

N N \  

where Aji and Bji are the appropriate influence coefficients, which depend on the 
instantaneous co-ordinates of the ith and j t h  elements. 

The normalized perturbation velocity components induced at the midpoint of 
the j th  element by the small line wake element attached to the trailing edge can be 
expressed in the form 

(%uj)k = (Yw)kBjN+l ,  (wwj)k = - (?w)kAiN+I* (10) 

The normalized perturbation velocity components induced a t  the midpoint of the 
j t h  element by the concentrated wake vortices F, (= r,/U,c) formed at earlier 
times can be expressed in the form 

k-  1 lc-1 

(%j)k - - ,=1 2 cjmTm, ( W r j ) k = z l D f m f m r  (11) 

where C,, and Djm are the appropriate influence coefficients. 
The total normalized perturbation velocity components are the sums of the corn- 

ponents given in (9)-( 11). These total normalized perturbation velocity components 
are superimposed on the mainstream components and substituted into the basic 
equations (6)-(8). The basic set of equations is nodinear thus the following iterative 
procedure is adopted for its solution. 

The values of Ak and 0, are guessed, leaving N linear equations from (6) and a 
quadratic equation from (7). The N linear equations are solved to give 

(CT& (i = 1, ..., N )  
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in terms of yk, then y k  is obtained from the quadratic equation obtained from (7). 
Once ( w i ) k  (i = 1, . . . , N )  and 3/k are known (Uw)k and ( w w ) k  can be calculated and 
substituted in (8) to find the new values of Ak and 6,. The procedure is repeated until 
Ak and 6, have converged to the desired accuracy. 

Once the source and vorticity strengths have been determined the velocity distri- 
bution on the aerofoil is known from (9)-(11). The pressure coefficient follows from 
the unsteady Bernoulli equation, namely 

where Q is the total velocity on the outer aerofoil surface and # is the velocity potential. 
The force and moment coefficients are obtained by direct integration of the pressure 
distributions. 

In  the calculation of the unsteady pressure coefficient, a#/at has to be determined. 
In  the present numerical method the value of a#/at at the midpoint of thejth element 
at  time tk  is approximated by 

(13) (a#/a t j )k  = { ( # i l k -  ( # j ) k - l } / ( t k -  tk- l )*  

The velocity potential # is obtained by integrating the velocity field along the x axis 
from upstream of the aerofoil and then around the aerofoil surface. 

Once the solution a t  time tk has been determined, the model is set up for time 
tk+l, with the wake pattern as calculated from the solution at  time t k .  The distributed 
vorticity on the wake element at time t ,  is now assumed to be concentrated into a 
vortex of strength (Yw)k  Ak at time tk+l situated a t  

(14) 

The resultant velocity a t  the centre of each of the other concentrated vortices in the 
wake is calculated from the solution at time tk ,  then the position of that vortex at  time 
t,+, follows directly. 

Programs have been developed in FORTRAN I V  which can handle 35 elements on 
the aerofoil for a core size of 20 K, including the system and program. 

The present numerical method has been applied to 
(i) the time-dependent build-up of lift on an aerofoil which undergoes a sudden 

(ii) an aerofoil which starts to oscillate about zero incidence at a high frequency, 
(iii) an aerofoil passing through a sharp-edged gust. 

I = (%ailing edgclk + i A k  cos e, + (‘w)k ($k+l - t k ) ,  

= (%railing edge)k -k i A k  sin 6k -k (%)k (tk+l - tk )*  

change in incidence from 0 to a at time t = 0,  

3. Sudden change in incidence 
The particular case considered for the calculation of the time-dependent build-up 

of lift is an 8.4 yo thick symmetric Von Mises aerofoil with an incidence change from 
0 to 0.1 rad at t = 0. The problem has been solved with short time intervals AtUJc 
of 0.005 for 0 < tUJc < 0.3, longer time intervals of 0.05 for intermediate times 0.3- 
0.5 and somewhat longer time intervals of 0-1 for times 0.5-2-0; thus it is hoped that 
the correct behaviour of the solution at small times, when the rates of change are 
rapid, has been obtained. 
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FIGURE 6. Pressure distribution on 8.4 yo symmetrical Von Mises aerofoil after a sudden change 
in incidence. - ~m tU /C = a; ---, tUm/c = 2.0; ---, tUm/C = 0.2. 

The development of the pressure distribution with time is shown in figure 6. The 
starting vortex and its convection downstream after a time interval tU,/c = 2.0 are 
shown in figure 7 (a). The build-up of the lift CL/CLs, where CLs is the ultimate steady 
lift, is shown in figure 7 ( b ) .  Although the curve appears to build up from zero with 
time it must be remembered that in this problem there is an impulsive lift at t = 0, 
which arises from the instantaneous change in 4; no attempt has been made to 
determine the impulsive loading at  t = 0. The solution has been obtained at  time 
t,(tU,/c = 0.005) and again at  time tz(tUm/c = 0-01); the graph shown in figure 7 ( b )  
starts at t,. For comparison the standard linearized solution (i.e. the Wagner function) 
is shown; also shown is the solution by Giesing (1968), in which the condition of flow 
separation a t  the trailing edge was satisfied but not the condition of zero loading. 
It is seen that there are signScant differences among the various solutions up to 
tU& = 2.0. 
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FIQURES 7(a)-(c) .  For legend see p. 170. 

The moment coefficient about the leading edge is shown in figure 7(c). It is seen 
that at very small times there is a large nose-up pitching moment but then the moment 
changes sign; the centre of pressure approaches its final steady position near the 
quarter-chord point. 

The variation of the drag coefficient with time is shown in figure 7 ( d ) .  It is seen 
that with the build-up of lift the drag initially increases (up to about tUJc = 1.6) 
then starts to reduce, becoming zero as t+m. This result suggests that initially the 
build-up in the leading-edge suction lags behind the normal pressure to give a resultant 
drag force. This trend is confirmed by the pressure distribution at  different times 
(figure 6) .  
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FIQURE 7. 8.4% symmetrical Von Mises aerofoil. (a) Wake vortex sheet at tUm/c = 2.0. ( 6 )  
Growth of lift following sudden change in incidence (a increased from 0 to 0-1 rad). (0 )  Pitching 
moment about leading edge following sudden change in incidence. ( d )  Drag coefficient following 
sudden change in incidence. ---, linearized theory; -0-, Giesing ; - , present approach. 

C 

FIQURE 8. Vortex position at tUm/c = 1.85. 8.4 % symmetrical Von Mises aerofoil in pitching 
oscillation; Y = 20, o0 = 0.573". 

4. Aerofoil oscillations at a high frequency 
The same aerofoil (i.e. an 8.4 yo thick symmetrical Von Wses aerofoil) is considered 

to be oscillating in pitch at  a high frequency (Y = uc/Um = 20) with an amplitude of 
0.01 rad (0.573"). The flow characteristics have been calculated at  time intervals of 
0.03927 UP to turn/, = 1.84569. 

The wake pattern in figure 8 shows the rolling-up of the wake vorticity into vortices 
of opposite sign; the pattern closely follows observed patterns in real fluids. The 
behaviour of the wake in the trailing-edge region is shown in figure 9 for a half-cycle 
when periodic flow has become established. Starting when 8 (the angle of pitch) is 
zero with 0 increasing, the strengths of the shed vorticity are indicated and the 
conservation of the convected vorticity is seen at  successive time intervals. As 8 
increases, anticlockwise vorticity is shed as expected; after 8 reaches its maximum 
amplitude and begins to decrease, vorticity of opposite sign is shed; there is a phase 
lead in the direction of the shed vorticity as can be seen at  8 = 0-573', when the 
direction of the shed vorticity has already changed sign. It is seen that when 0 returns 
to zero after a half-cycle the wake pattern is similar to the original pattern when 8 
was initially zero; the magnitude of the trailing vorticity is of the same magnitude but 
of opposite sign. 

One of the most encouraging features of the numerical solution is the fact that the 
trailing-edge wake element is virtually parallel to either the upper or the lower aerofoil 
surface (e.g. at  0 = 0,O-406", 0-406", 0) except when the sign of the vorticity is changing 
(at 8 = 0.573"). So although the Kutta condition has not been specifically formulated 
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FIGURE 9. 8.4 yo thick symmetrical Von Mises aerofoil oscillating about 

leading edge : theoretical characteristics in region of trailing edge. 

in terms of tangential flow separation as postulated by Maskell, the present numerical 
solution seems to satisfy this tangential flow condition for most of the cycle. 

Figure 10 shows the variation of C, and C, (about the leading edge) over one cycle 
five cycles after the start. Comparison is made with results obtained from a theory which 
is linearized in the amplitude of oscillation but uses the exact aerofoil profile (Basu & 
Hancock 1978). Also, results from the standard linearized theory are indicated. The 
results of the present numerical approach show that the variations in C, and C, 
are not quite simple harmonic owing to the skewness in the neighbourhood of the peak. 

5. Aerofoil entering a sharp-edged gust 
An aerofoil entering a sharp-edged vertical gust of velocity wg is shown in figure 11. 

The gust boundary, which is a surface of discontinuity of vertical velocity, remains 
planar as long as the gust front is not too close to the aerofoil. As the gust front ap- 
proaches the aerofoil and travels past it, the part of the gust front near the aerofoil 



172 B. C. Basu and G. J .  Hancock 

2.0 4 

- 2 . 0 4  

FIGURE 10. 8.4% symmetrical Von Mises aerofoil oscillating about leading edge; v = 20, 
8, = 0.573'. ---, linearized theory: -, present approach; --- , Basu & Hancock (1978). 

surface is deformed under the influence of the aerofoil profile and the wake. For the 
calculation of the growth of the lift as the aerofoil passes through the vertical gust, 
it has been the usual practice to assume that the gust front remains undeformed as 
gust travels past the aerofoil and its wake. Such an assumption simplifies the numerical 
problem considerabIy, but for a more extensive treatment the deformation of the 
gust front should be taken into account. Here this is done by representing the gust 
front by a vortex sheet under the influence of the aerofoil and its wake. The present 
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FIGURE 11. Aerofoil entering a vertical gust field. 
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FIGURE 12. Model for undefonned gust front at time t,. 

numerical method has been applied to both cases, first assuming that the gust front 
does not deform, then allowing for gust deformation. 

The problem for an undeformed gust boundary has been solved using directly the 
method outlined in 5 2, where, as shown in figure 12, the gust velocity wrr modifies 
the tangency boundary conditions on those aerofoil elements which are behind the 
advancing gust front and in the gust field. 

To allow the gust to deform the gust front is represented by a vortex sheet (figure 13). 
Between two chord lengths above and below the aerofoil this vortex sheet is divided 
into a number of straight-line elements of uniform vorticity, as shown in figure 13. 
The gust front is divided into elements of vorticity rather than point vortices for 
compatibility with the aerofoil singularity distributions. The two outer parts of the 
gust front extending to infinity above and below the aerofoil are assumed to remain 
undeformed and are therefore convected with the free-stream velocity. The straight- 
line elements representing the central part of the gust front are convected according 
to the local resultant velocities acting on them. The resultant velocities are calculated 
at  the midpoints of each element and the resultant velocities at the ends of the ele- 
ments are then obtained by interpolation. Thus the positions of these gust elements 
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FIGURE 13. Model for the deformed gust front. (a) Gust front ahead of aerofoil. 
(b )  Gust front passing over aerofoil. 

a t  time t, can be determined from their positions and velocity field at time tk-l; the 
strength of the uniform vorticity on each eIement alters with a change in element 
length, but the total circulation around each element remains constant. 

The calculation is performed in three stages. The first stage corresponds to the 
time before the gust front meets the leading edge of the aerofoil. The second stage 
corresponds to the time during which the gust front passes over the aerofoil. The third 
stage corresponds to the time when the gust front is beyond the aerofoil and passing 
through the wake. At each time step of the calculation the length, orientation and 
hence the vorticity strength of each element of the gust front are determined along 
with the singularity distributions on the aerofoil surface and the strength and position 
of the wake trailing-vortex system. 

The first stage of the calculation is relatively simple, however some difficulties 
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FIGURE 14. Attachment of the gust front to the aerofoil. 

appear during the second stage. For example, at the instant just after the gust first 
‘hits’ the aerofoil it is necessary to estimate the two ‘initial’ points of contact of the 
gust front with the aerofoil surface as the gust front divides into its upper and lower 
branches. These two ‘initial ’ points of contact are determined approximately by 
assuming that the flow around the leading edge in the neighbourhood of the stagnation 
point when the gust front is just ahead of it is that past a circular cylinder of radius 
equal to the leading-edge radius (figure 14). Using this velocity field an estimate is 
made of the distance travelled by the gust elements in the neighbourhood of the leading 
edge from just upstream of the stagnation point to just behind it as the aerofoil 
enters the gust. 

Another effect during this second stage concerns the motion of the points of contact 
of the gust front over the upper and lower aerofoil surfaces at  successive time intervals 
since the points of contact should coincide with the ends of the elements on the aerofoil 
surface for numerical convenience. To meet this objective, as shown in figure 13(b ) ,  
the element of the gust front adjacent to the aerofoil surface is replaced by two gust 
elements connecting the part of the gust front away from the aerofoil surface to the 
two edges of the nearest aerofoil surface element. The circulation around the gust 
‘element’ in contact with the aerofoil surface is divided between the two arms in 
proportion to the distance of the contact point from the element’s ends. 

Since the velocities of the points of contact of the gust front on the upper and lower 
surfaces are different, the gust front leaves the two surfaces of the aerofoil a t  the 
trailing edge at  different times. The third stage of the calculation, when the gust front 
traverses the wake is again straightforward, even though it involves the calculation 
of the wake pattern due to the mutual interference of the gust front and the wake 
vortex sheet. 

Throughout the calculation the method gives the presslxre distribution at  each 
time step, from which the overall force and moment characteristics can be calculated. 

The same aerofoil (i.e. an 8.4 yo thick symmetrical Von Mises aerofoil) is considered 
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FIGURE 15. Entry of 8.4 yo thick symmetrical Von Mises aerofoil into a sharp-edged gust. 
---, undeformed gust front; , deformed gust front. 

for this calculation of an aerofoil passing through a sharp-edged gust. The vertical 
velocity of gust is taken to be 0.25 U,. 

Figure 15 shows the pressure distributions as the gust passes over the aerofoil for 
both deformed and undeformed gust fronts when the aerofoil is initially at  zero in- 
cidence. In  the case of an undeformed gust boundary there is a sharp peak in the 
pressure distribution on both surfaces at  the position of the gust front. This pressure 
peak diffuses out on the upper surface but not on the lower surface when the gust 
front is allowed to deform, owing presumably to the different curvatures of the gust 
front above and below the aerofoil. The pressure distributions over the forward part 
of the aerofoil which has entered the gust field are almost identical whether or not 
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FIGURE 16. 8.4% thick symmetrical Von Mises aerofoil entering a sharp-edged gust. ---, 
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FIauRE 17. Wake patterns associated with a sharp-edged gust. 
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gust deformation is taken into account. However gust-front deformation changes the 
pressure distributions over the aft part of the aerofoil which has not yet entered the 
gust field. In  spite of these differences, as indicated in figure 16, the overall lift and 
moments are not substantially different except when the gust is passing the trailing 
edge; the results for the undeformed gusts show sudden changes in the lift and 
moment while gust deformation appears to smooth out these abrupt variations. 
Calculations have also been carried out with the aerofoil a t  a mean incidence; the 
effect of mean incidence is indicated most clearly in the moment curve in figure 16, 
where there is a lag effect as the gust front passes the trailing-edge region since inci- 
dence modifies the progression of the gust front over the upper and lower aerofoil 
surfaces. 

As the gust progresses down the wake, as shown in figure 17, there is a considerable 
difference in the wake patterns for deformed and undeformed gust fronts. This 
difference is a measure of how the wake is affected by the mutual interaction of the 
wake vortex system and the vortex sheet representing the gust front. It is seen in 
figure 17(c) that incidence does not introduce any significant change in the wake 
characteristics. One possible practical implication of these wake patterns is to raise 
the question of the accuracy of calculations of the forces on a tailplane in the down- 
wash field of a main wing when the aircraft enters a sharp-edged gust. 

6. Concluding remarks 
The numerical method outlined in this paper leads to the calculation of the inviscid 

flow field about an aerofoil undergoing an arbitrary time-dependent motion if it is 
assumed that the flow remains attached and that it separates at the trailing edge of 
the aerofoil. Although resuIts have been presented for a sudden change in incidence, 
a high frequency oscillation and entry into a sharpTedgedgust, the method is completely 
general. 
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